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Abstract

Weak scaling studies were performed for the explicit solid dynamics component of the ALEGRA
code on two Cray supercomputer platforms during the period 2012-2015, involving a production-
oriented hypervelocity impact problem. Results from these studies are presented, with analysis
of the performance, scaling, and throughput of the code on these machines. The analysis demon-
strates logarithmic scaling of the average CPU time per cycle up to core counts on the order of
10,000. At higher core counts, variable performance is observed, with significant upward excur-
sions in compute time from the logarithmic trend. However, for core counts less than 10,000, the
results show a 3× improvement in simulation throughput, and a 2× improvement in logarithmic
scaling. This improvement is linked to improved memory performance on the Cray platforms, and
to significant improvements made over this period to the data layout used by ALEGRA.
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Chapter 1

Introduction

ALEGRA is a finite-element multiphysics simulation tool designed for high performance com-
puting using the massively parallel, MPI-based model that has been prevalent since the 1990’s.
Written primarily in C++ and Fortran, it is widely used for modeling shock hydrodynamics phe-
nomena including terminal ballistics and material failure as shown in Figure 1.1 [17, 7], as well as
systems involving resistive magnetohydrodynamics, particularly in electromagnetic pulsed power [9,
10, 15].

Because of the physical and mathematical complexity of these problems, and the large num-
bers of unknowns typically involved (millions to tens of millions on the average), ALEGRA relies
heavily on parallelism to provide reasonable solution times at the users’ required level of accu-
racy. Therefore, significant technical effort has been devoted throughout its lifetime to ensuring
that ALEGRA can run successfully at the highest available levels of parallelism, and exploit the
parallelism effectively.

Tests of the code’s parallel scaling and serial-parallel consistency are built in to the software
development environment and executed regularly at very modest degrees of parallelism (8 or 16
processors). However, typical uses cases involve much greater numbers of parallel processors
(hundreds to thousands on the average), which are not available for regular testing. Therefore, it
is necessary to carry out test campaigns examining parallel scaling in these environments, and in
environments anticipated for future use cases.

t = 0 t = 5 s t = 10 s t = 15 s 

Figure 1.1: Oblique impact (“Whipple”) simulation used here for ALEGRA parallel performance
testing.
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This was done for ALEGRA and the Eulerian shock hydrodynamics code CTH in 2011, demon-
strating scaling out to about 10,000 cores on the Cray XE6 system Raptor [6]. The 2011 study is
extended here to other Cray systems in order to provide a current performance snapshot as well as
an updated test configuration and comparison to previous performance. In this report, we provide
a description of the machines subject to testing in Section 2, followed by information on the partic-
ular solid dynamics problem used for testing here in Section 3. This is the same as one of the two
problems used in the 2011 study, shown in Figure 1.1. We provide a brief review of the concept
of “scaling” and in particular “weak scaling” in Section 4, describing the configuration of the tests
used here. We then examine and discuss the performance test results in Section 5 and provide final
thoughts in Section 6.
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Chapter 2

Supercomputing platforms for testing

Two machines were tested in this study. The first series of tests was conducted in December
of 2012 on Cielo, a Cray XE6 machine housed at Los Alamos National Laboratory (LANL) [1].
The second series was conducted in April and July of 2015 on Excalibur, a Cray XC40 housed at
the U.S. Army Research Laboratory (ARL) [2]. Both machines had been in operation for less than
18 months at the time of the testing. The properties of the two platforms are summarized here in
Table 2.1.

Table 2.1: Characteristics of computing platforms used in ALEGRA performance testing.
Cielo Excalibur

System Cray XE6 Cray XC40
Online date November, 2011 April, 2015
Core type AMD Opteron Intel Xeon E5
Core speed 2.4 GHz 2.3 GHz
Cores per node 16 32
Memory type DDR3-1333 MHz DDR4-2133 MHz
Memory per node 32 GB 128 GB
Total compute cores 143,104 99,136
Interconnect type Gemini 3D Torus Aries/Dragonfly

The Cielo Cray XE6 system is owned by the Department of Energy (DOE). Design, procure-
ment and deployment were accomplished by the New Mexico Alliance for Computing at Extreme
Scale (ACES), a joint partnership between Los Alamos and Sandia. It is built on AMD Opteron
chip technology and the Gemini interconnect, which uses a 3D torus topology. Each compute node
has 16 cores, for a total of approximately 140,000 compute cores. The machine came online in
2011 and is still in use currently within DOE.

The Excalibur Cray XC40 system is owned and developed by the Department of Defense High
Performance Computing Modernization Program (DoD HPCMP), and is operated by the ARL
Dedicated Shared Resource Center (DSRC). It is built on the Intel Xeon E5 chip technology with
the Aries Dragonfly interconnect. The compute nodes have 32 cores each, and there are approx-
imately 100,000 total compute cores available. The machine came online in April, 2015 and is
currently in use under the DoD HPCMP.

To contrast the hardware, note that the CPU clock frequencies are very similar between the
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two, but the memory speed and type is significantly improved. Also, the Opteron has the ability
to do at most two vector operations simultaneously, while the Xeon has an 8-wide vector unit.
As for the interconnect, improvements have resulted in lower latency communications and higher
bandwidth (some details are in Reference [4]). Finally, while Cielo has more total cores, the total
problem size that can fit on Excalibur is more than a third larger than can fit on Cielo.

A comparison of the two machines only became possible by coincidence, because of dedicated
time allocations and the availability of the parallel scaling test configuration on both machines.
The 2012 testing on Cielo used a version of ALEGRA that was current as of June 20, 2012,
and was built using the Portland Group (PGI) compiler. The 2015 testing on Cielo used the Re-
lease 18Jun2014 version of ALEGRA, which was the most recently released code at the time, and
was built using the Intel compiler.

12



Chapter 3

ALEGRA hypervelocity impact simulation

Our test considers the oblique hypervelocity impact of a copper sphere on a steel plate, based on
the experiments of Grady and Kipp. [11] This problem exists as a test case for both ALEGRA and
CTH, and is representative of production-scale impact and penetration problems that are modeled
using the explicit solid dynamics capability in ALEGRA. The same problem was also considered
in the 2011 scaling study of Doney et al. [6]

The problem is sometimes referred to as the “Whipple” problem, in reference to hypervelocity
impact shields used for spacecraft protection. In the problem, a 3.18-mm-diameter sphere of cop-
per impacts a 5.6-mm-thick plate of steel, at an impact velocity of 4520 m/s and an impact angle
of 30.8◦. Because of the obliquity, the problem must be modeled in 3D. The impact event results
in pervasive particulation of both the plate and projectile material, and the formation of debris
clouds propagating in the forward and backward directions, as seen in Figure 1.1. The problem is
simulated out to a time of 15 µs, or about 14.5 µs after initial impact.

In the ALEGRA test, the copper is modeled using the Johnson-Cook yield strength model
and the standard Sesame 3320 equation of state table. The steel is modeled using the Johnson-
Cook yield strength model and the Sesame 2150 (iron) equation of state table. For both materials,
dynamic fracture is modeled by use of a simple void insertion model with a trigger set at a tensile
pressure of -0.345 GPa for copper and -0.1379 GPa for steel.

This problem is of interest here because it includes dynamics and constitutive models that are
typical of ALEGRA use cases, and so should provide a realistic indication of the behavior of
ALEGRA for everyday users. However, this problem does not exercise ALEGRA’s multiphysics
and brittle failure modeling capabilities. These are also of interest, but they lie outside the scope
of this study.

The hypervelocity impact simulation is set up on a uniform 3D Eulerian finite-element mesh
consisting of 8-node hexahedrons with unit aspect ratio. We apply simple uniform mesh refinement
through the course of the parallel scaling study, with no geometry modifications. The mesh has at a
minimum approximately 2 elements per projectile radius, and at a maximum about 20 elements per
projectile radius. During mesh refinement, we rely on the built-in CFL-based stability criterion, so
that the time step size also diminishes as the element dimension decreases.
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Chapter 4

Weak scaling concept and scaling analysis
configuration

To test the parallel performance of ALEGRA, we scale the oblique impact problem up in overall
size in such way that the work per processor is held approximately constant as the number of cores
is increased. Called “weak scaling” or “scaled speedup”, this technique was introduced early on in
distributed parallel computing by Gustafson et al. [12] as more relevant to scientific computing than
“strong scaling”, which suffers from Amdahl’s Law [3]. In weak scaling, as the overall problem
size grows, the amount of parallel work increases, thus counteracting the degredation of serial-
to-parallel work ratio. Weak scaling appears throughout the computational physics literature, for
example in the 2009 work work of Lin et al. [14] A brief description and comparison of weak and
strong scaling is given in the 2007 paper of Colella et al. [5], along with a justification for the
choice of weak scaling for certain types of analyses and certain types of codes.

Mesh refinement

For weak scaling here, the workload per processor is set by choosing an approximate number
of elements per processor. Based on previous studies with ALEGRA for this type of problem,
values near 10,000 elements per core are optimal in terms of minimizing communication cost. For
each core count tested on each platform, a mesh resolution and corresponding element count is
chosen which should result in 10,000 elements per core.

Although the meshing is done “inline” using the Pamgen capability, and is controlled with a
single input parameter, the desired core count per processor can only be achieved to within several
percent because of rounding involved in configuring the mesh to the dimensions of the problem
domain. Because the mesh is not body-fitted and includes mixed-material elements, the time of
initial impact also varies slightly with the mesh resolution.
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Performance metrics

For each test, the performance of the code is evaluated by recording the total elapsed wall clock
time, less time spent in input/output, and the total number of explicit time integration cycles (taken
as the final values of the history variables CPUNOIO and CYCLE). The total element count must
also be recorded since this is not known a priori.

From these data, a mean compute time per cycle is then tabulated, which is the ratio of the
final elapsed time to the final cycle number. This is a representative performance metric that can
be compared across the various mesh resolutions, time step sizes, and core counts, and takes into
account the performance of the code throughout the entire calculation.

In some studies, such a metric has also been weighted by the total number of zones or elements.
However, there is no need for such weighting so long as the core count on each processor is
approximately constant. The analysis could be improved by disabling output to data files, which
could have an indirect effect, however this was not done here. The simulations here include all
output that would be requested in typical use cases, including inline visualization (Spymaster),
data files (Exodus), history/diagnostic data (Hisplt), and restart files. The time spent writing these
files was excluded from the performance metric.

In perfect weak scaling, the mean compute time per cycle would remain constant as the num-
ber of processors increases; but in practice, this would only occur if no communication took place.
However, deviation from this ideal is commonly examined as a performance quantity of interest.
And since the weak scaling behavior of the dominant communications occurring in domain decom-
posed, hyperbolic and parabolic PDE solvers is most often logarithmic in the number of processors,
we expected logarithmic weak scaling behavior for ALEGRA as well. Such logarithmic scaling
arises from limits in the underlying network as well as the MPI algorithm efficiency [13].

Cores per node

In the tests on Excalibur, the effect of idling a subset of cores on each node is explored. This
should help to clarify whether competition for access to memory between processes on a node
with shared memory could be negatively affecting performance. To do this, it is necessary to set an
MPI OPT environment variable N, and use batch scheduling node/core selection criteria to ensure
only the requested number of cores is used on each node. In this way, weak scaling is studied on
Excalibur for the full set of 32 cores per node, and for 24 and 16 cores per node.

16



Chapter 5

ALEGRA parallel performance

Performance testing was done on Cielo in December of 2012, and on Excalibur in April and
July of 2015. The testing was done with the oblique impact problem described above, and the
results are described below.
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Figure 5.1: Test results for Cielo (2012).

Cielo test results, 2012

Testing was done on Cielo for core counts ranging from 16 to 49,152 and element counts
ranging from 118,416 to 586,984,320. In each case, the full set of 16 cores was used on each
node. The mean element count per core for these cases ranged between a minimum of 11,500 and
a maximum of 12,116, which is higher than the target of 10,000. An additional test at 65,536 cores
and 819,492,884 elements failed due to integer overflow, since some components of ALEGRA are
limited to 32-bit integers.

The mean compute time per cycle from these weak scaling tests on Cielo in 2012 is shown in
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Figure 5.1. The data are also tabulated in Table A.2. We observe logarithmic scaling up through
4,096 cores, as indicated by a logarithmic trend which is fit to these data points and shown on the
plot. The slope of this curve is 0.199. At 16,384 cores, which was the next sampling point, the
beginning of a significant upward excursion in compute time can be seen, while at 49,152 cores,
there is a 50% upward excursion in mean compute time per cycle relative to the logarithmic trend.
These last two points are excluded from the fit.

Excalibur test results, 2015
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Figure 5.2: Test results for Excalibur (2015) for 32, 24, and 16 cores per node, including four
repeated identical tests at 12,288 cores.

Testing was done on Excalibur for core counts ranging from 16 up to 65,536 and element
counts ranging from 154,800 to 646,677,108. Three test series were conducted, using the full set
of 32 cores per node, and reduced sets of 24 and 16. The mean element count per core for these
cases ranged between a minimum of 8,861 and a maximum of 10,164. Several additional tests
were conducted to find the largest element count possible in 3D under the 32-bit limitation. The
largest successful element count was 691,109,952 on 61,488 cores, and a test at approximately 740
million elements resulted in failure.

The mean compute time per cycle from the tests on Excalibur in 2015 is shown in Figure 5.2,
with data for 16, 24, and 32 cores per node. These data are also tabulated in Tables A.3-A.5. We
observe logarithmic scaling up through 16,384 cores for 16 and 32 cores per node, and through
12,288 cores for 24 cores per node. As seen in the plot, the variation in cores per node had almost
no perceptible influence on the overall scaling behavior. This indicates that competition for access
to memory (mentioned in Section 4) is likely not a significant contributor to the performance
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behavior at these scales. The logarithmic trend shown in Figure 5.2 fits the data up to those limits
and has a slope of 0.092, showing significant improvement over the 2012 results from Cielo.

For higher core counts, significant excursions are again observed on Excalibur, as they were
on Cielo. These are seen at core counts of 12,288, 24,576, and 49,152 for 24 cores per node, and
at 65,536 cores for 32 cores per node. Core counts larger than 16,384 were not attempted at 16
cores per node. The magnitude of these excursions relative to the level predicted by the logarithmic
scaling trend ranges from 13% to 120%. The origin of these excursions is discussed in Section 5.
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Figure 5.3: Test results for both platforms compared directly.

During the testing campaign on Excalibur, the appearance of seemingly unpredictable excur-
sions at high core counts suggested the need for tests of repeatability. Therefore, the test at 12,288
cores for 24 cores per node was run a total of four times with the identical setup. The tests are
visible in Figure 5.2. While the first run gave results on the trend line, one of the three subsequent
runs, which were concurrent, showed a significant increase in compute time. This run leaped by
more than 70% in mean compute time and is clearly visible as an outlier in the plot. This happened
even though none of the characteristics of the solution showed any significant difference between
the four tests. This provides an potentially important clue to the origin of some of the outlying data
points in the Cielo and Excalibur testing, discussed in Section 5.

There was one additional difficulty in the testing on Excalibur, which is that jobs allocated to
a certain node consistently became unresponsive after a short time. Since only a limited window
of dedicated time was available to do the performance testing, this node had to be isolated by
recursive bisection and excluded from subsequent job submissions.
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Comparison of multiple platforms

The weak scaling trends from both machines are compared directly in Figure 5.3. Also included
in this plot are the three data points from the 2011 study of Doney et al. [6] for which the element
count per node was within 20% of the 10,000 element-per-core target used here. (See Table A.1.)
These tests were run on the Raptor platform, which was a Cray XE6 system with 16 cores per
node, operated by the U.S. Air Force Research Laboratory DSRC. (It has since been consolidated
into another DoD HPCMP platform with a different name.)

Noticeable in Figure 5.3 is a significant improvement in the overall throughput of the ALEGRA
code for the oblique impact problem, for the platforms tested here and in Reference [6] over the
period 2011-2015. For core counts less than 12,000, the improvement in compute time is approx-
imately a factor of 3. For larger core counts, the performance on Excalibur in 2015 still exceeds
that observed on Cielo in 2012 or Raptor in 2011. Also notable is that the slope of the weak scaling
trend decreased from 0.199 in 2012 to 0.092 in 2015, indicating an improvement in scaling that is
roughly a factor of 2.

The majority of this remarkable improvement in overall performance of ALEGRA on these
platforms is most likely due to improvements in hardware, particularly the improved memory
speeds and the performance of the interconnect (see Table 2.1). The upgrade from 16 to 32 cores
per node may also play a role because more of the communication could stay on each compute
node. However, an extensive series of performance-oriented modifications were also made to the
code infrastructure and some of the algorithms over this period of time, which contributed to the
observed performance increase.

The performance effect of the code modifications can be seen in a study performed on a
machine consisting of 16-core Intel Xeon E5-2760 processors in June of 2014 [8]. Two solid-
dynamics problems were run using a version of the code as it existed at dates ranging from January
2013 to July 2014. One problem was a hypervelocity impact problem very similar to that studied
here, and the other a 2D simulation for formation of a shaped charge jet. Each code version was
run nine times for each date and each simulation used all 16 cores of a single compute node. As
seen in Figure 5.4, an overall reduction of 27% in wall clock time was observed between January
2013 and July 2014 on this platform.

Additional information is provided by a single-compute-node study on the Cielo and Excalibur
machines. The hypervelocity impact problem was run using all cores of a single compute node (16
cores for Cielo and 32 for Excalibur) and at two problem sizes (10,000 and 20,000 elements per
core). In order to disentangle the performance contribution of the ALEGRA code and the hard-
ware improvements, the 2013 ALEGRA software would have to be run at scale on the Excalibur
platform. Due to limited time allocation, this test could not be run, and the relative contribution to
the increased performance must be extrapolated from the single-node runs.
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of Cielo using the 2012 release of ALEGRA, the 2014 release, and on a single compute node of
Excalibur using the 2014 release. Ten runs of each were made and are marked with an “X”.

The results shown in Figure 5.5 indicate a 10% speedup on Cielo due to code modifications,
and a further 30% speedup due to hardware improvements between Cielo and Excalibur. Together
this information indicates that improvements in both the hardware and the software contributed to
the factor-of-3 speedup seen in the performance data on Excalibur at core counts under 10,000.
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Alternate representation

The scaling trends shown in Figures 5.1-5.3 can also be represented in terms of the grind
time rather than the mean compute time per cycle. By “grind time” we mean the time spent by
the code per computational cycle per element. The per-element weighting results in a quantity
that should diminish proportionally with mesh refinement, in the ideal case where communication
costs are vanishingly small. This alternate representation of parallel scaling was used for CTH data
appearing in Reference [6].
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Figure 5.6: Scaling trends for ALEGRA on Excalibur (2015), using the grind-time representation,
for the tests with 32, 24, and 16 cores per node.

The grind time is also recorded by ALEGRA on every timestep, excluding time spent in I/O
operations, in the “GRINDNOIO” variable. For the tests on Excalibur, a mean grind time was
obtained by averaging this quantity over all timesteps in each simulation. These data are plotted
against the core count in Figure 5.6. A least-squares fit to all of the log-log data produces a slope
of -0.87, indicating good parallel efficiency. These fits include the excursions at high core counts.
The excursions are much less pronounced in this representation.

Discussion of excursions

Although most production-level ALEGRA calculations ALEGRA are currently done with
thousands of cores, the excursions in the weak scaling trends above 10,000 cores are troubling.
Examination of the physical characteristics of the solutions has ruled out any mechanical or ther-
mal effect that could be to blame. Fracture patterns, time step sizes, and global energy balances in
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the simulations indicate no deviation from the expected trends.

The conventional explanation of performance variability on massively parallel hardware is usu-
ally that periodic operating system daemon process issues, or resource contention is the major
source of variability. [16]. Alternatively:

• Bad Compute Nodes: The existence of a compute node that would hang and not complete
lends credence to the idea that a defective compute node operating at a reduced effective
speed could slow down the entire calculation. For instance, the Xeon E5 system supports
Adaptive Thermal Throttling, which will slow the clock rate if the DDR memory overheats.
The Xeon also has a thermally managed Turbo Boost and AVX (vector computation) mode
that will alter the clock speed to manage chip temperature. A defective fan, or other reduction
in cooling could force an otherwise nominal performance node into reduced performance.

• Mismatched compute nodes: Figure 5.4 was generated by submitting a single node, multi-
core job nine times into the batch system. The resulting spread of times is likely indicative
of the intrinsic spread of serial performance of nodes on that machine.

In the “Whipple” problem, there are a few processor regions directly in the path of the impact
that will have a very largly disproportionate amount of serial computation to perform. While
the vendors for these large scale platforms such as Excalibur and Cielo make an effort to
match processor performance, there is a manufacturing variation intrinsic to each type of
chip set. If a high intensity computational region is randomly matched to a processor that
happens to be at the bottom of the distribution of intrinsic serial speed, that combination will
force the rest of the calculation to wait on that one node.

• Bad or damaged Interconnect NIC or fiber: If the communications interconnect to a par-
ticular node or set of nodes is compromised, this can also act to slow down the communica-
tion: if a fiber channel has a high level of noise, the detection of errors in the transmitted data
will generate a request to re-send that data, with corresponding latency. Alternatively, the
interconnect may route around a damaged node, adding hops (and delay) across the commu-
nication fabric. This re-routing may lead to localized overcrowding and “data storms” that
will effectively slow down any computation using that section of the interconnect.

• Node Layout: It is standard practice when running performance studies on small numbers
of nodes to run the analysis jobs multiple times. Experience has shown that the specific
nodes allocated to a particular run of a job may have less than optimal node topology in
the communication interconnect. These effects tend to diminish as the number of nodes
requested increase. Though unlikely, the large excusion on Excalibur at 12288 nodes may
be a result of an ’optimally bad’ node allocation by the node manager.

It is also not possible to rule out issues in the ALEGRA code, or in its communication patterns
and frequency, as playing a role in this behavior at very large core counts. Further investigaton and
research is needed to unravel the true origin of this variability.
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Chapter 6

Conclusions

In this scaling study, ALEGRA shows excellent parallel scaling performance for core counts
less than about 10,000, which is typical of current production calculations. The total CPU time
per computational cycle shows consistent logarithmic scaling (in the weak scaling sense) across
three decades of core counts. This is true even for a production-style simulation environment
that includes choices of dimensions, materials, and I/O settings that are characteristic of typical
ALEGRA use cases for solid dynamics. Therefore, we expect that most users should see very
good parallel scaling of ALEGRA for their problems of interest in this area.

However, the performance deteriorates somewhat for very large scales, between 10,000 and
65,536 cores. The CPU time per computational cycle shows significant excursions as high as 120%
from the logarithmic trends. The behavior also becomes more variable, with some jobs at the same
core count differing in performance by as much as 70%, while others lie on the logarithmic trend.
We speculate that these excursions could be due to a number of hardware- and software-related
issues, most of which are not easily addressed. The outcome at these scales indicates there is still
work to be done in order to assess these behaviors, and to ensure users of ALEGRA can operate in
these regimes in the future.

The most remarkable outcome of the study emerges from the comparison of the code’s be-
havior at different stages of development over a period of three years, on similar Cray platforms
designed and built over nearly the same period. Since the same scaling study was performed on
both machines – on Cielo in 2012 and Excalibur in 2015 – we can assess the improvement of the
ALEGRA code and the supercomputing hardware. We find that the overall rate of throughput of
ALEGRA on these machines increased by approximately a factor of 3 over this time, and the slope
of the weak-scaling trend decreased by a factor of approximately 2. This is true for core counts
less than about 10,000. This means the time-to-solution seen by users is dramatically better than it
was three years ago, and the benefit seen by using higher parallelism is also much better.

These improvements are partially due to noticeable improvements in the hardware – particu-
larly the memory speed and interconnect performance. They are also due to extensive improve-
ments made to the data layout and infrastructure used by the ALEGRA code. In the future, it is
hoped that these improvements will also be extended beyond the 10,000-core limit experienced
here.
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Appendix A

Run Time Data

Below are the raw run-time statistics used here from the scaling studies on Raptor, Cielo, and
Excalibur.

Table A.1: Selected run-time statistics from Raptor in 2011 [6] with 16 cores per node.
Cores CPUNOIO (s) NSTEPS CPUNOIO/NSTEPS (s)

32 3.1400e+02 202 1.554455
4096 2.9160e+03 1085 2.687558

16384 1.9717e+04 6047 3.260625

Table A.2: Run-time statistics from Cielo in 2012 with 16 cores per node.
Cores CPUNOIO (s) NSTEPS CPUNOIO/NSTEPS (s)

16 2.3400e+02 178 1.3146
64 4.3900e+02 274 1.6022

256 7.2800e+02 422 1.7251
1024 1.3220e+03 668 1.9790
4096 2.3520e+03 1066 2.2064

16384 4.9900e+03 1763 2.8304
49152 1.5619e+04 3680 4.2443
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Table A.3: Run-time statistics from Excalibur in 2015 with 16 cores per node.
Cores CPUNOIO (s) NSTEPS CPUNOIO/NSTEPS (s)

16 6.7800e+01 167 4.059880e-01
32 9.8940e+01 208 4.756731e-01
64 1.4250e+02 259 5.501931e-01

128 1.4896e+02 308 4.836364e-01
256 2.4817e+02 402 6.173383e-01
512 3.4110e+02 501 6.808383e-01

1024 4.5529e+02 624 7.296314e-01
2048 5.8224e+02 790 7.370126e-01
4096 8.0029e+02 991 8.075580e-01
8192 1.136780e+03 1265 8.986403e-01

16384 1.753680e+03 1697 1.033400e+00

Table A.4: Run-time statistics from Excalibur in 2015 with 24 cores per node.
Cores CPUNOIO (s) NSTEPS CPUNOIO/NSTEPS (s)

24 8.4680e+01 190 4.456842e-01
48 1.2477e+02 239 5.220502e-01
96 1.6402e+02 296 5.541216e-01

192 2.1682e+02 366 5.924044e-01
384 3.0862e+02 455 6.782857e-01
768 4.1058e+02 573 7.165445e-01

1536 5.3726e+02 720 7.461945e-01
3072 7.2855e+02 897 8.122073e-01
6144 9.8857e+02 1142 8.656480e-01

12288 1.408020e+03 1437 9.798330e-01
12288 1.414550e+03 1437 9.843772e-01
12288 2.551880e+03 1437 1.775838e+00
12288 1.425230e+03 1437 9.918093e-01
24576 2.314760e+03 1960 1.181000e+00
49152 6.541610e+03 2688 2.433635e+00
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Table A.5: Run-time statistics from Excalibur in 2015 with 32 cores per node.
Cores CPUNOIO (s) NSTEPS CPUNOIO/NSTEPS (s)

32 8.5550e+01 202 4.235149e-01
64 1.2286e+02 251 4.894821e-01

128 1.7950e+02 320 5.609375e-01
256 2.4804e+02 394 6.295431e-01
512 3.2848e+02 485 6.772784e-01

1024 4.1365e+02 597 6.928811e-01
2048 6.3145e+02 774 8.158269e-01
4096 8.4352e+02 973 8.669270e-01
8192 1.137230e+03 1229 9.253295e-01

16384 1.643630e+03 1591 1.033080e+00
32768 2.419160e+03 2121 1.140575e+00
65536 6.394080e+03 3999 1.598920e+00
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